Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

3,17-Dioxoandrost-4-en-4-yl acetate

L. C. R. Andrade, ${ }^{\text {a }}$ J. A. Paixão, ${ }^{\text {a }}$ M. J. M. de Almeida, ${ }^{\text {a }}$
F. M. Fernandes Roleira ${ }^{\text {b }}$ and E. J. Tavares da Silva ${ }^{\text {b }}$ *

${ }^{\text {a }}$ CEMDRX, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal, and ${ }^{\mathbf{b}}$ Centro de Estudos Farmacêuticos, Laboratório de Química
Farmacêutica, Faculty of Pharmacy, University of Coimbra, P-3000-295 Coimbra, Portugal
Correspondence e-mail: jap@pollux.fis.uc.pt

Received 28 March 2007
Accepted 29 March 2007
Online 11 May 2007
The title compound, $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}$, has a 4-acetoxy substituent positioned on the steroid α face. The six-membered ring A assumes a conformation intermediate between $1 \alpha, 2 \beta$-half chair and 1α-sofa. A long Csp ${ }^{3}-\mathrm{Csp}^{3}$ bond is observed in ring B and reproduced in quantum-mechanical ab initio calculations of the isolated molecule using a molecular-orbital Hartree-Fock method. Cohesion of the crystal can be attributed to van der Waals interactions and weak C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Following our interest in preparing steroidal enzymatic inhibitors aimed at breast cancer treatment and in studying their structure-activity relationships (Cepa et al., 2005), the title compound, (I), which is the acetate derivative of formestane, was prepared as previously described in the literature (Marsh et al., 1985). We report here the molecular structure of (I) determined by single-crystal X-ray analysis, and compare it with that of the free molecule as given by quantum-mechanical $a b$ initio calculations.

(I)

An ORTEPII (Johnson, 1976) plot of (I) is shown in Fig. 1. The 4 -acetoxy substituent is positioned on the α face of the steroid nucleus. Average values for the atomic distances are in good agreement with reported values (Allen et al., 1987), although for the $\mathrm{Csp}{ }^{3}-\mathrm{Csp}^{3}$ bonds, extreme values of 1.514 (3) (C12-C13) and 1.569 (3) \AA (C9-C10) were found,
deviating significantly from the average value of 1.535 (14) \AA. The abnormally large value is probably due to the severe distortion of ring $A(\mathrm{C} 1-\mathrm{C} 5 / \mathrm{C} 10)$. A similar $\mathrm{C} 9-\mathrm{C} 10$ bond length was observed for one of the non-equivalent molecules in the asymmetric unit of formestane [1.571 (3) \AA; Griffin et al., 1980].

As a consequence of the $\mathrm{C} 4=\mathrm{C} 5$ double bond present in ring A, this ring assumes a conformation intermediate between $1 \alpha, 2 \beta$-half chair and 1α-sofa [asymmetry parameters (Duax \& Norton, 1975): $\Delta C_{2}(1,2)=12.5(3)^{\circ}, \Delta C_{s}(1)=$ $13.7(2)^{\circ}$ and $\left.\Delta \mathrm{C}_{s}(3)=45.1(2)^{\circ}\right]$. Rings $B(\mathrm{C} 5-\mathrm{C} 10)$ and C (C8/C9/C11-C14) have sightly distorted chair conformations, with average torsion angles of $54.0(18)$ and $55(2)^{\circ}$, respectively. The five-membered ring $D(\mathrm{C} 13-\mathrm{C} 17)$ has a 14α conformation, most common for these 17 -one steroids [puckering parameters (Cremer \& Pople, 1975): $q_{2}=$ 0.417 (3) \AA and $\varphi_{2}=215.6$ (4) ${ }^{\circ}$; pseudorotation (Altona et al., 1968) and asymmetry parameters (Duax \& Norton, 1975): $\Delta=$ $-34.4(4)^{\circ}, \varphi_{\mathrm{m}}=42.7(1)^{\circ}, \Delta C_{s}(14)=0.7(2)^{\circ}, \Delta C_{2}(13,14)=$ $\left.20.0(2)^{\circ}\right]$. The distance between terminal atoms O 3 and O 17 is 10.564 (2) A. The C19-C10‥C13-C18 pseudo-torsion angle of $-0.06(19)^{\circ}$ indicates that the molecule is not twisted. The dihedral angle between the least-squares plane of the four non-H atoms of the acetate group and that of ring A is 79.78 (10) ${ }^{\circ}$.

In order to check whether the observed large deviations from the mean of the $\mathrm{C} 9-\mathrm{C} 10$ and $\mathrm{C} 12-\mathrm{C} 13$ bond lengths were intrinsic to the free steroid molecule or rather due to an influence of crystal packing, we have performed a quantum mechanical calculation of the equilibrium geometry of the free molecule. These calculations were performed with the computer program GAMESS (Schmidt et al., 1993). A mol-ecular-orbital Roothan Hartree-Fock method was used with an extended $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. Tight conditions for convergence of both the self-consistent field cycles and the maximum density and energy gradients were imposed (10^{-5}

Figure 1
A plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
atomic units). The programs were run on a Pentium IV PC (3.0 GHz) running Linux. Interestingly, the calculations reproduce the long $\mathrm{C} 9-\mathrm{C} 10$ bond (calculated value $1.570 \AA$). For the shorter Csp ${ }^{3}-\mathrm{Csp}^{3}$ bond, the calculations give a slightly higher value than the observed value (calculated value $1.526 \AA$). Overall, there is a very good agreement between the remaining calculated and observed bond lengths. However, the equilibrium geometry of the isolated molecule has a significantly more twisted steroid nucleus (calculated pseudotorsion angle $\left.\mathrm{C} 19-\mathrm{C} 10 \cdots \mathrm{C} 13-\mathrm{C} 18=4.9^{\circ}\right)$. There is considerable freedom of rotation of the acetoxy group around the $\mathrm{C} 4-\mathrm{O} 4$ and $\mathrm{O} 4-\mathrm{C} 41$ bonds, as evidenced by the torsion angles $\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4-\mathrm{C} 41$ [experimental $80.0(2)^{\circ}$; calculated 77.0°] and $\mathrm{C} 4-\mathrm{O} 4-\mathrm{C} 41-\mathrm{O} 41$ [experimental $0.4(4)^{\circ}$; calculated 15.4°].

Owing to the absence of a strong hydrogen-bond donor, cohesion of the structure of (I) is mainly achieved by van der Waals and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. One intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ short contact between the single-bonded O atom of the 4 -acetoxy group and a neighbouring H atom of ring B is present $[\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 4=2.808(5) \AA$ A . There are, in addition, two intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ short distances of 3.357 (6) and 3.459 (6) \AA between H atoms of rings B and C and O atoms.

Experimental

To an ice-cooled solution of formestane $(0.3 \mathrm{~g}, 0.99 \mathrm{mmol})$ in pyridine $(5.0 \mathrm{ml})$, acetyl chloride ($0.11 \mathrm{ml}, 1.48 \mathrm{mmol}$) was added, and the reaction was stirred for 3 h until completion. Dichloromethane $(100 \mathrm{ml})$ was then added, and the organic layer was washed with aqueous $0.25 \mathrm{NHCl}(2 \times 100 \mathrm{ml}), 10 \% \mathrm{NaHCO}_{3}(2 \times 100 \mathrm{ml})$ and water ($2 \times 100 \mathrm{ml}$), dried over anhydrous MgSO_{4} and evaporated to dryness giving the desired title compound as a yellow crystalline solid (yield $0.335 \mathrm{~g}, 98 \%$). Crystals of (I) of good quality suitable for X-ray crystallographic analysis were grown from ethyl acetate [m.p. 457458 K ; literature m.p. 457.0-457.5 K (Marsh et al., 1985)]. IR (NaCl salt plate, ν, cm^{-1}): $1758,1735,1681,1625 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.91$ $\left(s, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 1.27\left(s, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.24\left[s, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{O}\right], 2.73$ (ddd, $\left.1 \mathrm{H}, J_{6 \alpha-6 \beta}=15.0 \mathrm{~Hz}, J_{6 \alpha-7 \alpha}=4.0 \mathrm{~Hz}, J_{6 \alpha-7 \beta}=2.5 \mathrm{~Hz}, 6 \alpha-\mathrm{H}\right)$.

Crystal data
$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}$
$M=344.43$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=11.5681$ (3) \AA
$b=12.0702$ (3) \AA
$c=13.512(2) \AA$

Data collection

Enraf-Nonius MACH-3
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.851, T_{\text {max }}=0.890$
3577 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.088$
$S=1.09$
2128 reflections
$V=1886.6(3) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$\mu=0.66 \mathrm{~mm}^{-1}$
$T=294$ (2) K
$0.36 \times 0.17 \times 0.17 \mathrm{~mm}$

2135 independent reflections
1795 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
3 standard reflections
frequency: 300 min
intensity decay: 2.2%

230 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (A).

O4-C4	$1.409(3)$	C4-C5	$1.334(3)$
C2-C3	$1.498(3)$	C $9-\mathrm{C} 10$	$1.569(3)$
C3-C4	$1.465(3)$	C12-C13	$1.514(3)$

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 4$	0.97	2.34	$2.808(3)$	109
$\mathrm{C} 6-\mathrm{H} 6 B \cdots 3^{\mathrm{i}}$	0.97	2.42	$3.358(3)$	164
$\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{O} 41^{\mathrm{ii}}$	0.97	2.54	$3.459(3)$	159
Symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+\frac{1}{2},-y+1, z+\frac{1}{2}$.				

All H atoms were refined as riding on their parent atoms, with $\mathrm{C}-$ $\mathrm{H}=0.96-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C). The absolute configuration was not determined from the X-ray data but was known from the synthesis route. Friedel pairs were merged before refinement.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: PLATON (Spek, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

This work was supported by Fundação para a Ciência e Tecnologia under programme No. POCI2010.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3116). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Cepa, M. M. D. S., Tavares da Silva, E. J., Correia-da-Silva, G., Roleira, F. M. F. \& Teixeira, N. A. A. (2005). J. Med. Chem. 48, 6379-6385.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structures. New York: Plenum.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Griffin, J. F., Strong, P. D., Duax, W. L., Brodie, A. M. H. \& Brodie, H. J. (1980). Acta Cryst. B36, 201-203.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Marsh, D. A., Brodie, H. J., Garrett, W., Tsai-Morris, C. H. \& Brodie, A. M. H. (1985). J. Med. Chem. 28, 788-795.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Schmidt, M. W., Baldrige, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Sue, S., Windus, T. L., Dupuis, M. \& Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

